固態電解質的應用優勢
固態電解質是未來鋰電池電解液發展的一個趨勢,因為固態電解質電池技術發展到今天,從技術路徑來講,固態電解質主要可分為氧化物電解質,硫化物電解質,有機聚合物電解質,LiPON型電解質等,可以說相對已經比較成熟了,但也同樣遇上了瓶頸,急需新一代技術的誕生,尤其是新能源領域,。固態電池是有望成為下一代動力電池技術中,呼吁聲最高的一種。因為全固態電池不僅技術成熟度相對較高,國內外眾多鋰離子電池企業也已將全固態電池技術作為重要的下一代技術儲備。

在固態電池技術發展早期,由于固態電解質材料電導率相對較低,研發的重點多集中在提高固態電解質的電導率方面,因此具有高離子電導率的硫化物固態電解質和氧化物固態電解質吸引了廣泛關注。
全固態鋰離子電池采用固態電解質替代傳統有機液態電解液,可以很好的解決電池安全性問題,是電動汽車和規模化儲能理想的化學電源。其關鍵主要包括制備高室溫電導率和電化學穩定性的固態電解質以及適用于全固態鋰離子電池的高能量電極材料、改善電極/固態電解質界面相容性。
固態鋰電池是基于鋰電池開發的,相比傳統的鋰電池,主要是不再用液態或是膠質作為正負極之間的傳導材料,從而大幅度提高了汽車安全性、耐高溫能力能。具有高安全性、高能量密度、長循環壽命、寬工作溫度范圍等優點,其中非常核心的就是固態電解質。
氧化物固態電解質按照物質結構可以分為晶態和玻璃態(非晶態)兩類,其中晶態電解質包括鈣鈦礦型、NASICON型、LISICON型以及石榴石型等,玻璃態氧化物電解質的研究熱點是用在薄膜電池中的LiPON型電解質。
氧化物晶態固體電解質化學穩定性高,可以在大氣環境下穩定存在,有利于全固態電池的規模化生產。研究熱點在于提高室溫離子電導率及其與電極的相容性兩方面。目前,改善電導率的方法主要是元素替換和異價元素摻雜,與電極的相容性也是制約其應用的重要問題。
硫化物晶態固體電解質最為典型的是thio-LISICON,由東京工業大學KANNO教授最先在Li2S-GeS2-P2S體系中發現,化學組成為Li4-xGe1-xPxS4,室溫離子電導率最高達2.2×10-3S/cm(其中x=0.75),且電子電導率可忽略。thio-LISICON的化學通式為Li4-xGe1-xPxS4(A=Ge、Si等,B=P、A1、Zn等)。
硫化物玻璃固體電解質通常由P2S5、SiS2、B2S3等網絡形成體以及網絡改性體Li2S組成,體系主要包括Li2S-P2S5、Li2S-SiS2、Li2S-B2S3。組成變化范圍寬,室溫離子電導率高,同時具有熱穩定高、安全性能好、電化學穩定窗口寬(達5V以上)的特點,在高功率以及高低溫固態電池方面優勢突出,是極具潛力的固態電池電解質材料。
聚合物固態電解質由聚合物基體(如聚酯、聚酶和聚胺等)和鋰鹽(如LiClO4、LiAsF4、LiPF6、LiBF4等)構成,因其質量較輕、黏彈性好、機械加工性能優良等特點而受到了廣泛的關注。
常見的SPE包括聚環氧乙烷(PEO)、聚丙烯腈(PAN)、聚偏氟乙烯(PVDF)、聚甲基丙烯酸甲酯(PMMA)、聚環氧丙烷(PPO)、聚偏氯乙烯(PVDC)以及單離子聚合物電解質等體系。
目前,主流的SPE基體仍為最早被提出的PEO及其衍生物,主要得益于PEO對金屬鋰穩定并且可以更好地解離鋰鹽。
LiPON型電解質是美國橡樹嶺國家實驗室(ORNL),在高純氮氣氣氛中采用射頻磁控濺射裝置濺射高純Li3P04靶制備得到鋰磷氧氮(LiPON)電解質薄膜。
據了解,該材料具有優秀的綜合性能,室溫離子導電率為2.3×10-6S/cm,電化學窗口為5.5V(http://vs.Li/Li+),熱穩定性較好,且與LiCoO2、LiMn2O4等正極以及金屬鋰、鋰合金等負極相容性良好。LiPON薄膜離子電導率的大小取決于薄膜材料中非晶態結構和N的含量,N含量的增加可以提高離子電導率。